92 research outputs found

    Small-Sample Inferred Adaptive Recoding for Batched Network Coding

    Full text link
    Batched network coding is a low-complexity network coding solution to feedbackless multi-hop wireless packet network transmission with packet loss. The data to be transmitted is encoded into batches where each of which consists of a few coded packets. Unlike the traditional forwarding strategy, the intermediate network nodes have to perform recoding, which generates recoded packets by network coding operations restricted within the same batch. Adaptive recoding is a technique to adapt the fluctuation of packet loss by optimizing the number of recoded packets per batch to enhance the throughput. The input rank distribution, which is a piece of information regarding the batches arriving at the node, is required to apply adaptive recoding. However, this distribution is not known in advance in practice as the incoming link's channel condition may change from time to time. On the other hand, to fully utilize the potential of adaptive recoding, we need to have a good estimation of this distribution. In other words, we need to guess this distribution from a few samples so that we can apply adaptive recoding as soon as possible. In this paper, we propose a distributionally robust optimization for adaptive recoding with a small-sample inferred prediction of the input rank distribution. We develop an algorithm to efficiently solve this optimization with the support of theoretical guarantees that our optimization's performance would constitute as a confidence lower bound of the optimal throughput with high probability.Comment: 7 pages, 2 figures, accepted in ISIT-21, appendix adde

    BAR: Blockwise Adaptive Recoding for Batched Network Coding

    Full text link
    Multi-hop networks become popular network topologies in various emerging Internet of things applications. Batched network coding (BNC) is a solution to reliable communications in such networks with packet loss. By grouping packets into small batches and restricting recoding to the packets belonging to the same batch, BNC has a much smaller computational and storage requirements at the intermediate nodes compared with a direct application of random linear network coding. In this paper, we propose a practical recoding scheme called blockwise adaptive recoding (BAR) which learns the latest channel knowledge from short observations so that BAR can adapt to the fluctuation of channel conditions. We focus on investigating practical concerns such as the design of efficient BAR algorithms. We also design and investigate feedback schemes for BAR under imperfect feedback systems. Our numerical evaluations show that BAR has significant throughput gain for small batch size compared with the existing baseline recoding scheme. More importantly, this gain is insensitive to inaccurate channel knowledge. This encouraging result suggests that BAR is suitable to be realized in practice as the exact channel model and its parameters could be unknown and subject to change from time to time.Comment: submitted for journal publicatio

    On Defeating Graph Analysis of Anonymous Transactions

    Get PDF
    In a ring-signature-based anonymous cryptocurrency, signers of a transaction are hidden among a set of potential signers, called a ring, whose size is much smaller than the number of all users. The ring-membership relations specified by the sets of transactions thus induce bipartite transaction graphs, whose distribution is in turn induced by the ring sampler underlying the cryptocurrency. Since efficient graph analysis could be performed on transaction graphs to potentially deanonymise signers, it is crucial to understand the resistance of (the transaction graphs induced by) a ring sampler against graph analysis. Of particular interest is the class of partitioning ring samplers. Although previous works showed that they provide almost optimal local anonymity, their resistance against global, e.g. graph-based, attacks were unclear. In this work, we analyse transaction graphs induced by partitioning ring samplers. Specifically, we show (partly analytically and partly empirically) that, somewhat surprisingly, by setting the ring size to be at least logarithmic in the number of users, a graph-analysing adversary is no better than the one that performs random guessing in deanonymisation up to constant factor of 2

    Otitis Media in a New Mouse Model for CHARGE Syndrome with a Deletion in the Chd7 Gene

    Get PDF
    Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Application of Natural Antimicrobials for Food Preservation

    Full text link

    Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex

    Get PDF

    A Protocol Design Paradigm for Batched Sparse Codes

    No full text
    Internet of Things (IoT) connects billions of everyday objects to the Internet. The mobility of devices can be facilitated by means of employing multiple wireless links. However, packet loss is a common phenomenon in wireless communications, where the traditional forwarding strategy undergoes severe performance issues in a multi-hop wireless network. One solution is to apply batched sparse (BATS) codes. A fundamental difference from the traditional strategy is that BATS codes require the intermediate network nodes to perform recoding, which generates recoded packets by network coding operations. Literature showed that advanced recoding schemes and burst packet loss can enhance and diminish the performance of BATS codes respectively. However, the existing protocols for BATS codes cannot handle both of them at the same time. In this paper, we propose a paradigm of protocol design for BATS codes. Our design can be applied in different layers of the network stack and it is compatible to the existing network infrastructures. The modular nature of the protocol can support different recoding techniques and different ways to handle burst packet loss. We also give some examples to demonstrate how to use the protocol
    corecore